Effect of hyperosmolality on control of blood flow and sweating

Author:

Fortney S. M.,Wenger C. B.,Bove J. R.,Nadel E. R.

Abstract

To study the effect of hyperosmolality on thermoregulatory responses, five men [average maximal O2 consumption (VO2 max) = 48 ml X kg-1 X min-1] cycled at 65-75% VO2max for up to 30 min in a 30 degrees C, 40% relative humidity environment under three conditions. First, control tests (C) were performed where preexercise plasma volume (PV) and osmolality (Osm) averaged 3,800 ml and 282 mosmol X kg-1, respectively. Second, exercise tests (D) were performed following dehydration induced by fluid restriction and mild exercise (30% VO2max) in hot (40 degrees C) ambient conditions. Each subject then rested in cool surroundings 1 h before performing the exercise test. Preexercise PV and Osm averaged 3,606 ml and 293 mosmol X kg-1, respectively. Third, exercise tests (I) were performed following dehydration, but during the 1-h rest interval, 3% saline was infused so that PV was restored to 3,826 ml and Osm averaged 294 mosmol X kg-1 prior to exercise. During D, esophageal temperatures (Tes) were significantly higher than C, an avg 0.56 degrees C after 20 min exercise due to a 0.22 degrees C increase in Tes threshold for vasodilation, a 39% reduction in slope of the forearm blood flow (BF)-Tes relationship, a 32% average reduction in maximal exercise BF, and a 0.22 degrees C increase in Tes sweating threshold. During I, responses were similar to D, except the BF-Tes slope and the maximum BF were not significantly different from C. Thus hyperosmolality modifies thermoregulation by elevating thresholds for both vasodilation and sweating even without decreases in PV.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 244 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3