Heat strain models applicable for protective clothing systems: comparison of core temperature response

Author:

Gonzalez R. R.1,McLellan T. M.2,Withey W. R.3,Chang S. K.1,Pandolf K. B.1

Affiliation:

1. US Army Research Institute of Environmental Medicine, Natick, Massachusetts 01760-5007;

2. Defence and Civil Institute of Environmental Medicine, North York, Ontario, Canada M3M 3B9; and

3. Centre for Human Sciences, Defence Research Agency, Farnborough, Hampshire GU146TD, United Kingdom

Abstract

Gonzalez, R. R., T. M. McLellan, W. R. Withey, S. K. Chang, and K. B. Pandolf. Heat strain models applicable for protective clothing systems: comparison of core temperature response. J. Appl. Physiol. 83(3): 1017–1032, 1997.—Core temperature (Tc) output comparisons were analyzed from thermal models applicable to persons wearing protective clothing. The two models evaluated were the United States (US) Army Research Institute of Environmental Medicine (USARIEM) heat strain experimental model and the United Kingdom (UK) Loughborough (LUT25) model. Data were derived from collaborative heat-acclimation studies conducted by three organizations and included an intermittent-work protocol (Canada) and a continuous-exercise/heat stress protocol (UK and US). Volunteers from the US and the UK were exposed to a standard exercise/heat stress protocol (ambient temperature 35°C/50% relative humidity, wind speed 1 m/s, level treadmill speed 1.34 m/s). Canadian Forces volunteers did an intermittent-work protocol (15 min moderate work/15 min rest at ambient temperature of 40°C/30% relative humidity, wind speed ≈0.4 m/s). Each model reliably predicted Tc responses (within the margin of error determined by 1 root mean square deviation) during work in the heat with protective clothing. Models that are analytically similar to the classic Stolwijk-Hardy model serve as robust operational tools for prediction of physiological heat strain when modified to incorporate clothing heat-exchange factors.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3