Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules

Author:

Fredberg J. J.,Ingram R. H.,Castile R. G.,Glass G. M.,Drazen J. M.

Abstract

To assess the homogeneity of airway responses to inhaled histamine we examined regional alveolar pressure excursions (PA) arising from small-amplitude oscillations applied at the airway opening (Pao). In five anesthetized and vagotomized dogs the sternum was split and the anterior right lung field exposed. PA was sampled using four capsules affixed to the right apical and middle lobes while lung impedance (ZL) and airway impedances (Zaw) were measured during conventional tidal breathing and during forced oscillations (2–60 HZ at 10 cmH2O distending pressure). During tidal breathing after exposure to aerosol histamine regional PA's could be separated into three groups by plotting Lissajous figures of PA vs. Pao: PA in phase with Pao (no looping), PA lagging Pao (moderate looping), and PA decreasing while Pao was increasing and vice versa (paradoxical looping), suggesting unresponsive, responsive, and closed pathways, respectively, between the airway opening and specific alveolar zones. During high-frequency oscillation the corresponding PA spectra were markedly different from control spectra and revealed resonant amplification, overdamped resonance, and marked attenuation, respectively. With induced bronchospasm resonant amplification of PA was damped on average. However, the more obstructed and closed pathways were protected from resonant amplification, and the more open (nonlooping) pathways were subjected to resonant amplification greater than in the control state. In spite of this markedly nonhomogeneous behavior, frequency dependence of ZL was consistent with the model by Mead (J. Appl. Physiol. 26: 670–673, 1969), which ignores nonhomogeneity of peripheral compartments. These data demonstrate that the response of airways to inhaled histamine is nonhomogeneous but that frequency dependence of ZL above 2 Hz is not sufficient to characterize this nonhomogeneity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3