Optimizing the exercise protocol for cardiopulmonary assessment

Author:

Buchfuhrer M. J.,Hansen J. E.,Robinson T. E.,Sue D. Y.,Wasserman K.,Whipp B. J.

Abstract

Twelve normal men performed 1-min incremental exercise tests to exhaustion in approximately 10 min on both treadmill and cycle ergometer. The maximal O2 uptake (VO2 max) and anaerobic threshold (AT) were higher (6 and 13%, respectively) on the treadmill than the cycle; the AT was reached at about 50% of VO2 max on both ergometers. Maximal CO2 output, heart rate, and O2 pulse were also slightly, but significantly higher on the treadmill. Maximal ventilation, gas exchange ratio, and ventilatory equivalents for O2 and CO2 for both forms of exercise were not significantly different. To determine the optimum exercise test for both treadmill and cycle, we exercised five of the subjects at various work rate increments on both ergometers in a randomized design. The treadmill increments were 0.8, 1.7, 2.5, and 4.2%/min at a constant speed of 3.4 mph, and 1.7 and 4.2%/min at 4.5 mph. Cycle increments were 15, 30, and 60 W/min. The VO2 max was significantly higher on tests where the increment magnitude was large enough to induce test durations of 8-17 min, but the AT was independent of test duration. Thus, for evaluating cardiopulmonary function with incremental exercise testing by either treadmill or cycle, we suggest selecting a work rate increment to bring the subject to the limit of his tolerance in about 10 min.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3