Quantification of pulmonary vascular occlusion in dogs by use of the diffusing capacity

Author:

Chappell T. R.,Cassidy S. S.,Schwiep F.,Ramanathan M.,Johnson R. L.

Abstract

The purpose of these experiments was to quantify stagnant intrapulmonary blood caused by a pulmonary arterial occlusion (PAO). The hypothesis was that the diffusing capacity of the lung for CO (DLCO) would be altered little by PAO when measured with the usual inspired concentrations (0.3%) of CO, since stagnant blood distal to the occlusion takes up CO for 20 s or more before significant CO backpressure would develop. However, higher levels of CO (i.e., greater than or equal to 3%) would equilibrate faster with capillary blood (within 5-10 s), and DLCO measured 10-20 s subsequent to the high CO exposure would reflect only the DLCO in the unoccluded regions. Thus the fractional reduction in DLCO measured with 3% CO, with respect to that measured with 0.3% CO, should be related to the fractional occlusion of the pulmonary artery in a predictable way. We occluded the right pulmonary artery (RPAO), the left pulmonary artery (LPAO), or the left lower lobar artery (LLPAO) and found that DLCO measured during rebreathing a 0.3% CO mixture was 80, 87, and 94%, respectively, of the preocclusion value, whereas the DLCO measured during rebreathing a 3.3% CO mixture was 59, 73, and 87% of the preocclusion value. A computer model was developed to predict the reduction in DLCO at different levels of CO exposure that would be caused by varying fractions of PAO. Our data indicated that RPAO corresponded to a 42% vascular occlusion, LPAO a 35% occlusion, and LLPAO a 20% occlusion. Measurement of DLCO using low and high concentrations of CO might be useful in assessing the fraction of vascular bed occluded and in following noninvasively the course of vascular occlusion in a variety of pulmonary diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3