Canine pulmonary filtration coefficient calculated from optical, radioisotope, and weight measurements

Author:

Harris N. R.1,Parker R. E.1,Pou N. A.1,Roselli R. J.1

Affiliation:

1. Department of Biomedical Engineering, Vanderbilt University, Nashville 37235.

Abstract

Three independent methods were used to estimate filtration coefficient (Kf) in isolated dog lungs perfused with low-hematocrit (Hct) blood. Pulmonary vascular pressure was increased by 12–23 cmH2O to induce fluid filtration. Average Kf (ml.min-1 x cmH2O–1 x 100 g dry wt-1) for six lungs was 0.26 +/- 0.05 (SE) with use of equations describing conservation of optically measured protein labeled with indocyanine green. Good agreement was found when a simplified version of the multiequation theory was applied to the data (0.24 +/- 0.05). Both optical estimates were lower than those predicted by constant slope (0.55 +/- 0.07) or extrapolation (1.20 +/- 0.15) techniques, which are based on changes in total lung weight. Subsequent studies in five dog lungs investigated whether the higher Kf from weight analyses could be caused by prolonged pulmonary vascular filling. We found that 51Cr-labeled red blood cells (RBCs), monitored over the lung, continued to accumulate for 30 min after vascular pressure elevations of 9–16 cmH2O.Kf was determined by subtracting computed vascular filling from total weight change (0.28 +/- 0.06) and by perfusate Hct changes determined from radiolabeled RBCs (0.23 +/- 0.04). These values were similar to those obtained from analysis of optical data with the complete model (0.30 +/- 0.06), the simplified version (0.26 +/- 0.05), and from optically determined perfusate Hct (0.16 +/- 0.03). However, constant slope (0.47 +/- 0.04) and extrapolation (0.57 +/- 0.07) computations of Kf were higher than estimates from the other methods. Our studies indicate that prolonged blood volume changes may accompany vascular pressure elevations and produce overestimates of Kf with standard weight measurement techniques. However, Kf computed from optical measurements is independent of pulmonary blood volume changes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A rapid dynamic in vivo near-infrared fluorescence imaging assay to track lung vascular permeability after acute radiation injury;American Journal of Physiology-Lung Cellular and Molecular Physiology;2021-03-01

2. Acute Lung Injury and Pulmonary Vascular Permeability: Use of Transgenic Models;Comprehensive Physiology;2011-04

3. Evaluation of lung injury in rats and mice;American Journal of Physiology-Lung Cellular and Molecular Physiology;2004-02

4. Relationship of Ultrafiltration and Anastomotic Flow in Isolated Rat Lungs;Microcirculation;2001-10

5. Effect of changing vascular volume on measurement of protein reflection coefficient in ischemic lungs;American Journal of Physiology-Heart and Circulatory Physiology;2001-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3