Increased resistance in postobstructive pulmonary vasculopathy: structure-function relationships

Author:

Michel R. P.1,Hakim T. S.1

Affiliation:

1. Department of Pathology, McGill University, Montreal, Quebec, Canada.

Abstract

Postobstructive pulmonary vasculopathy (POPV) was produced by chronic ligation (120 days) of the left main pulmonary artery of seven dogs. To explain the abnormal physiological changes found using arterial and venous occlusion (AVO) in POPV (J. Appl. Physiol. 69: 1022–1032, 1990), the light-microscopic morphology, morphometry (n = 5), and ultrastructure (n = 6) of ligated left lower lobes were compared with contralateral control right lower lobes. First, there was a proliferation of bronchial vessels around pulmonary vessels and airways to explain bronchial blood flow rates of 330 ml/min in left lower lobes. The walls of the bronchial vessels contained smooth muscle with minimal elastic tissue and prominent myoendothelial junctions. Second, focal bronchopulmonary anastomoses were seen in pulmonary arteries approximately equal to 100 microns diam, which is consistent with our conclusion that the major site of communication is at the precapillary level and suggests that the limit between arterial and middle segments defined by AVO may lie in arteries of approximately equal to 100 microns. Third, to explain the increased arterial resistance in POPV, the pulmonary arteries had an increased percent medial muscle thickness, peripheral muscularization, and focal intimal thickening but had no plexiform lesions. The ultrastructure of the arteries revealed new intimal cells and numerous myoendothelial junctions rarely found in controls. Capillaries and veins were only subtly altered. Fourth, the hyperreactivity of arteries to serotonin and of veins to histamine found using AVO was partially explained by the increased medial thickness and decreased diameter but may also be due to increased receptor concentration or related to the myoendothelial junctions. We conclude that most of the hemodynamic alterations in POPV are related to morphological abnormalities and that this model has clinical and experimental relevance in the study of bronchopulmonary vascular interactions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3