Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion

Author:

Hakim T. S.,Michel R. P.,Chang H. K.

Abstract

To explain the changes in pulmonary vascular resistance (PVR) with positive- and negative-pressure inflation (PPI and NPI, respectively), we studied their effects in isolated canine left lower lobes perfused at constant flow rate. The venous pressure was kept constant relative to atmospheric pressure during lung inflation. The total arteriovenous pressure drop (delta Pt) was partitioned with the arterial and venous occlusion technique into pressure drops across arterial and venous segments (large indistensible extra-alveolar vessels) and a middle segment (small distensible extra-alveolar and alveolar vessels). PPI caused a curvilinear increase in delta Pt due to a large Starling resistance effect in the alveolar vessels associated with a small volume-dependent increase in the resistance of alveolar and extra-alveolar vessels. NPI caused an initial decrease in delta Pt due to reduction in the resistance of extra-alveolar vessels followed by an increase in delta Pt due to a volume-dependent increase in the resistance of all vessels. In conclusion, we provided for the first time evidence that lung inflation results in a volume-dependent increase in the resistance of both alveolar and extra-alveolar vessels. The data suggest that while the volume-related changes in PVR are identical with PPI and NPI, there are pressure-related changes that can be different between the two modes of inflation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3