Modeling road-cycling performance

Author:

Olds T. S.1,Norton K. I.1,Lowe E. L.1,Olive S.1,Reay F.1,Ly S.1

Affiliation:

1. Human Bioenergetics Laboratory, School of Sport and Leisure Studies, University of New South Wales, Oatley, Australia.

Abstract

This paper presents a complete set of equations for a “first principles” mathematical model of road-cycling performance, including corrections for the effect of winds, tire pressure and wheel radius, altitude, relative humidity, rotational kinetic energy, drafting, and changed drag. The relevant physiological, biophysical, and environmental variables were measured in 41 experienced cyclists completing a 26-km road time trial. The correlation between actual and predicted times was 0.89 (P < or = 0.0001), with a mean difference of 0.74 min (1.73% of mean performance time) and a mean absolute difference of 1.65 min (3.87%). Multiple simulations were performed where model inputs were randomly varied using a normal distribution about the measured values with a SD equivalent to the estimated day-to-day variability or technical error of measurement in each of the inputs. This analysis yielded 95% confidence limits for the predicted times. The model suggests that the main physiological factors contributing to road-cycling performance are maximal O2 consumption, fractional utilization of maximal O2 consumption, mechanical efficiency, and projected frontal area. The model is then applied to some practical problems in road cycling: the effect of drafting, the advantage of using smaller front wheels, the effects of added mass, the importance of rotational kinetic energy, the effect of changes in drag due to changes in bicycle configuration, the normalization of performances under different conditions, and the limits of human performance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3