Contribution of vasomotion to vascular resistance: a comparison of arteries from virgin and pregnant rats

Author:

Gratton Robert J.1,Gandley Robin E.1,McCarthy John F.1,Michaluk Walter K.2,Slinker Bryan K.3,McLaughlin Margaret K.14

Affiliation:

1. Departments of Obstetrics, Gynecology and Reproductive Sciences and of

2. Carnegie Mellon Research Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15230; and

3. Department of Veterinarian and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington 99164

4. Cell Biology and Physiology, University of Pittsburgh, Pittsburgh 15213;

Abstract

Intrinsic oscillatory activity, or vasomotion, within the microcirculation has many potential functions, including modulation of vascular resistance. Alterations in oscillatory activity during pregnancy may contribute to the marked reduction in vascular resistance. The purpose of this study was 1) to mathematically model the oscillatory changes in vessel diameter and determine the effect on vascular resistance and 2) to characterize the vasomotion in resistance arteries of pregnant and nonpregnant (virgin) rats. Mesenteric arteries were isolated from Sprague-Dawley rats and studied in a pressurized arteriograph. Mathematical modeling demonstrated that the resistance in a vessel with vasomotion was greater than that in a static vessel with the same mean radius. During constriction with the α1-adrenergic agonist phenylephrine, the amplitude of oscillation was less in the arteries from pregnant rats. We conclude that vasomotor activity may provide a mechanism to regulate vascular resistance and blood flow independent of static changes in arterial diameter. During pregnancy the decrease in vasomotor activity in resistance arteries may contribute to the reduction in peripheral vascular resistance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3