Affiliation:
1. Department of Kinesiology and Applied Physiology University of Colorado at Boulder, Boulder, Colorado 80309
Abstract
The effects of run endurance training and fura 2 loading on the contractile function and Ca2+ regulation of rat left ventricular myocytes were examined. In myocytes not loaded with fura 2, the maximal extent of myocyte shortening was reduced with training under our pacing conditions [0.5 Hz at 2.0 and 0.75 mM external Ca2+ concentration ([Ca2+]o)], although training had no effect on the temporal characteristics. The “light” loading of myocytes with fura 2 markedly suppressed (∼50%) maximal shortening in the sedentary and trained groups, although the temporal characteristics of myocyte shortening were significantly prolonged in the trained group. No discernible differences in the dynamic characteristics of the intracellular Ca2+ concentration ([Ca2+]) transient were detected at 2.0 mM [Ca2+]o, although peak [Ca2+] and rate of [Ca2+] rise during caffeine contracture were greater in the trained state at 0.75 mM [Ca2+]o. We conclude that training induced a diminished myocyte contractile function under the conditions studied here and a more effective coupling of inward Ca2+ current to sarcoplasmic reticulum Ca2+ release at low [Ca2+]o, and that fura 2 and its loading vehicle DMSO significantly alter the intrinsic characteristics of myocyte contractile function and Ca2+ regulation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献