Affiliation:
1. Department of Kinesiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and
2. Department of Exercise Science, University of Iowa, Iowa City, Iowa 52242
Abstract
The purpose of this study was to determine whether the maximum shortening velocity ( V max) in Hill’s mechanical model (A. V. Hill. Proc. R. Soc. London Ser. B. 126: 136–195, 1938) should be scaled with activation, measured as a fraction of the maximum isometric force (Fmax). By using the quick-release method, force-velocity (F-V) relationships of the wrist flexors were gathered at five different activation levels (20–100% of maximum at intervals of 20%) from four subjects. The F-V data at different activation levels can be fitted remarkably well with Hill’s characteristic equation. In general, the shortening velocity decreases with activation. With the assumption of nonlinear relationships between Hill constants and activation level, a scaled V max model was developed. When the F-V curves for submaximal activation were forced to converge at the V max obtained with maximum activation (constant V max model), there were drastic changes in the shape of the curves. The differences in V max values generated by the scaled and constant V max models were statistically significant. These results suggest that, when a Hill-type model is used in musculoskeletal modeling, the V max should be scaled with activation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献