Affiliation:
1. Freie Universitat Berlin, Universitatsklinikum Rudolf Virchow, Department of Anesthesiology and Intensive Care Medicine, Germany.
Abstract
Nitric oxide (NO) is an endogenous endothelium-derived relaxing factor that participates in the regulation of vascular tone. We studied the effects of inhaled NO gas on transient hypoxic pulmonary vasoconstriction and normal lungs in mechanically ventilated sheep. We measured hemodynamics and pulmonary gas exchange. For gas exchange measurements we used conventional blood gas analysis and the multiple inert gas elimination technique to estimate ventilation-perfusion heterogeneity. Our hypotheses were 1) inhaled NO reverses hypoxic pulmonary vasoconstriction, 2) the hemodynamic effects of inhaled NO are limited to the pulmonary circulation, and 3) inhaled NO does not impair pulmonary gas exchange and may redistribute blood flow to better ventilated areas of the lungs. Hypoxic pulmonary vasoconstriction was induced by using a hypoxic inspiratory gas mixture. The addition of 20 ppm NO to the hypoxic inspiratory gases returned pulmonary arterial pressure to baseline values. Systemic hemodynamics and gas exchange indexes derived from conventional blood gas analysis remained constant. Gas exchange indexes for ventilation-perfusion ratios and gas dispersions improved. The addition of 20 ppm NO to medical air (21% O2) had no such significant effects on hemodynamics or pulmonary gas exchange. Our findings show that inhaled NO reverses transient hypoxic pulmonary vasoconstriction. The hemodynamic effects of NO are limited to the pulmonary circulation; it does not impair pulmonary gas exchange. Moreover, it redistributes blood flow to better ventilated alveoli. As such, NO has potential in the treatment of lung diseases associated with pulmonary hypertension.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
154 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献