Leukocyte adhesion induced by inhibition of nitric oxide production in skeletal muscle

Author:

Akimitsu T.1,Gute D. C.1,Korthuis R. J.1

Affiliation:

1. Department of Physiology and Biophysics, Louisiana State University Medical Center, School of Medicine, Shreveport 71130, USA.

Abstract

Superfusion of rat cremaster muscles with the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) elicited significant leukocyte adhesion to postcapillary venules (20- to 30-microns diameter), an effect that was attenuated by pretreatment with L-arginine (an NO precursor) or sodium nitroprusside (SNP) (an exogenous source of NO). In contrast to the effects of pretreatment, addition of SNP or L-arginine to the superfusate 30 min after the initiation of NO synthase inhibition failed to reverse the L-NAME-induced leukocyte adherence. However, this effect was reversed by administration of an anti-CD18 monoclonal antibody or 8-bromoguanosine 3′,5′-cyclic monophosphate 30 min after L-NAME superfusion was initiated. These findings indicate that L-NAME promotes leukocyte adhesion to venular endothelium by a CD18-dependent mechanism in skeletal muscle and suggest that the failure of L-arginine or SNP to reverse L-NAME-induced leukocyte adherence is not due to a defect in signaling events that occur subsequent to activation of guanylate cyclase by NO derived from these agents. Because the simultaneous administration of superoxide dismutase (scavenges superoxide radicals) and SNP or L-arginine, but not superoxide dismutase alone, decreased L-NAME-induced leukocyte adherence, our results suggest that leukocyte adhesion caused by NO synthase inhibition may result in the generation of superoxide.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3