Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans

Author:

Behrakis P. K.,Higgs B. D.,Baydur A.,Zin W. A.,Milic-Emili J.

Abstract

In six spontaneously breathing anesthetized subjects [halothane approximately 1 maximum anesthetic concentration (MAC), 70% N2O-30% O2], we measured flow (V), volume (V), and tracheal pressure (Ptr). With airway occluded at end-inspiration tidal volume (VT), we measured Ptr when the subjects relaxed the respiratory muscles. Dividing relaxed Ptr by VT, total respiratory system elastance (Ers) was obtained. With the subject still relaxed, the occlusion was released to obtain the V-V relationship during the ensuing relaxed expiration. Under these conditions, the expiratory driving pressure is V X Ers, and thus the pressure-flow relationship of the system can be obtained. By subtracting the flow resistance of equipment, the intrinsic respiratory flow resistance (Rrs) is obtained. Similar measurements were repeated during anesthesia-paralysis (succinylcholine). Ers averaged 23.9 +/- 4 (+/- SD) during anesthesia and 21 +/- 1.8 cmH2O X 1(-1) during anesthesia-paralysis. The corresponding values of intrinsic Rrs were 1.6 +/- 0.7 and 1.9 +/- 0.9 cmH2O X 1(-1) X s, respectively. These results indicate that Ers increases substantially during anesthesia, whereas Rrs remains within the normal limits. Muscle paralysis has no significant effect on Ers and Rrs. We also provide the first measurements of inspiratory muscle activity and related negative work during spontaneous expiration in anesthetized humans. These show that 36-74% of the elastic energy stored during inspiration is wasted in terms of negative inspiratory muscle work.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3