Hydroxylation of salicylate by the in vitro diaphragm: evidence for hydroxyl radical production during fatigue

Author:

Diaz P. T.1,She Z. W.1,Davis W. B.1,Clanton T. L.1

Affiliation:

1. Department of Internal Medicine, Ohio State University, Columbus 43210.

Abstract

There is increasing evidence that oxygen-derived free radicals produced during strenuous work by the diaphragm may contribute to diaphragm fatigue and/or injury. However, the precise identity of these oxygen radicals remains unknown, inasmuch as oxygen free radicals are extremely short lived and their detection in biologic systems is quite difficult. There is recent evidence that the salicylate-trapping method may be a useful means of monitoring tissue production of hydroxyl radical (.OH). This method is predicated on the fact that salicylate's phenolic ring can be attacked by .OH at the 3 or 5 position to yield 2,3- or 2,5-dihydroxybenzoic acid (DHB). These metabolites are stable and can be identified by high-performance liquid chromatography (HPLC) coupled with electrochemical or ultraviolet detection. To test the hypothesis that hydroxylated salicylates are produced during diaphragm fatigue, we exposed in vitro rat diaphragm strips to a physiological saline solution containing 2.0 mM sodium salicylate for approximately 15 min. The solution was then removed, and the strips were fatigued (20 Hz, 200-ms train duration, 1 train/s) via phrenic nerve stimulation for 30 s-10 min. The diaphragm strips were subsequently homogenized, and the homogenate was analyzed by HPLC coupled with ultraviolet detection. Levels of 2,3-DHB were significantly higher in fatigued than in control nonfatigued strips. There was also a significant correlation between the amount of 2,3-DHB in the fatigued muscle and the accumulated tension-time product developed during fatigue. 2,5-DHB was not consistently identified in control or experimental strips.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3