Affiliation:
1. Department of Internal Medicine, Ohio State University, Columbus 43210.
Abstract
There is increasing evidence that oxygen-derived free radicals produced during strenuous work by the diaphragm may contribute to diaphragm fatigue and/or injury. However, the precise identity of these oxygen radicals remains unknown, inasmuch as oxygen free radicals are extremely short lived and their detection in biologic systems is quite difficult. There is recent evidence that the salicylate-trapping method may be a useful means of monitoring tissue production of hydroxyl radical (.OH). This method is predicated on the fact that salicylate's phenolic ring can be attacked by .OH at the 3 or 5 position to yield 2,3- or 2,5-dihydroxybenzoic acid (DHB). These metabolites are stable and can be identified by high-performance liquid chromatography (HPLC) coupled with electrochemical or ultraviolet detection. To test the hypothesis that hydroxylated salicylates are produced during diaphragm fatigue, we exposed in vitro rat diaphragm strips to a physiological saline solution containing 2.0 mM sodium salicylate for approximately 15 min. The solution was then removed, and the strips were fatigued (20 Hz, 200-ms train duration, 1 train/s) via phrenic nerve stimulation for 30 s-10 min. The diaphragm strips were subsequently homogenized, and the homogenate was analyzed by HPLC coupled with ultraviolet detection. Levels of 2,3-DHB were significantly higher in fatigued than in control nonfatigued strips. There was also a significant correlation between the amount of 2,3-DHB in the fatigued muscle and the accumulated tension-time product developed during fatigue. 2,5-DHB was not consistently identified in control or experimental strips.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献