Reduction in metabolic heat production during exposure to radio-frequency radiation in the rat

Author:

Gordon C. J.

Abstract

The purpose of this study was to assess the ability of the rat to reduce metabolic rate when exposed to deep-penetrating radio-frequency (RF) radiation. Male Sprague-Dawley rats were maintained at an ambient temperature (Ta) of 10 degrees C and exposed to 600-MHz radiation while metabolic rate (MR) was measured by indirect calorimetry. RF radiation exposures were made in a waveguide-type system that permitted the continuous control of specific absorption rate (SAR). SAR's of 2–5 W/kg led to significant reductions in MR when averaged from 30 to 60 min after the initiation of RF radiation exposure. The total decrease in MR during RF radiation exposure accounted for approximately 37% of the total RF heat load. Exposure of another group of rats to the same SAR's at a Ta of 10 degrees C resulted in a significant elevation in colonic temperature. Thus, despite the decrease in MR, heat gain still exceeded heat loss during RF radiation exposure, with a resultant elevation in deep body temperature. In conclusion, in a cold environment the rat exposed to RF radiation decreases its MR. However, the response time and efficiency of the response is not adequate to prevent an increase in body temperature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3