Author:
Flaim S. F.,Minteer W. J.
Abstract
A rat model for chronic left ventricular volume overload (a-v fistula, 2 mo) was used to test the effects of acute exhaustive treadmill exercise (EX) (5 min, 70 ft/min, 0 degrees grade) on cardiocirculatory hemodynamics and cardiac output (CO) distribution during heart failure (HF). Control (C) and HF rats were studied at rest (R) and during the last minute of EX. Heart rate (HR), mean arterial pressure (MAP), and left ventricular end-diastolic (LVEDP) pressure were recorded and CO, blood flow (BF) to various regions, and total CO distribution were determined by the radioactive microsphere technique. In HF, biventricular hypertrophy and elevated LVEDP at R were correlated with an average shunt size equaling 37% of total CO. In both groups, CO and HR rose during EX with no change in MAP. Systemic CO in HF was reduced compared to C during both R and EX. BF to splanchnic, renal, cutaneous, and testicular circulations was compromised at R in HF, whereas only skeletal muscle BF was compromised in HF during EX. Data for CO distribution suggest that the major effect of HF during R was increased delivery to the coronary and the skeletal muscle beds at the expense of the cutaneous and renal beds, whereas %CO to the cerebral, hepatic, and gastrointestinal beds was spared. During EX, %CO to skeletal muscle beds in HF was attenuated compared to C, whereas that to the coronary bed was increased with no change in other regions.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献