Author:
McMahon T. A.,Valiant G.,Frederick E. C.
Abstract
An important determinant of the mechanics of running is the effective vertical stiffness of the body. This stiffness increases with running speed. At any one speed, the stiffness may be reduced in a controlled fashion by running with the knees bent more than usual. In a series of experiments, subjects ran in both normal and flexed postures on a treadmill. In other experiments, they ran down a runway and over a force platform. Results show that running with the knees bent reduces the effective vertical stiffness and diminishes the transmission of mechanical shock from the foot to the skull but requires an increase of as much as 50% in the rate of O2 consumption. A new dimensionless parameter (u omega 0/g) is introduced to distinguish between hard and soft running modes. Here, omega 0 is the natural frequency of a mass-spring system representing the body, g is gravity, and u is the vertical landing velocity. In normal running, this parameter is near unity, but in deep-flexed running, where the aerial phase of the stride cycle almost disappears, u omega 0/g approaches zero.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
446 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献