Silent Synapses in Developing Cerebellar Granule Neurons

Author:

Losi Gabriele1,Prybylowski Kate1,Fu ZhanYan1,Luo Jian Hong1,Vicini Stefano1

Affiliation:

1. Departments of Physiology and Biophysics, Georgetown University School of Medicine, Washington, DC 20007

Abstract

Silent synapses are excitatory synapses endowed exclusively with N-methyl-d-aspartate (NMDA) responses that have been proposed to acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) responses during development and after long-term potentiation (LTP). These synapses are functionally silent because of the Mg2+ block of NMDA receptors at resting potentials. Here we provide evidence for the presence of silent synapses in developing cerebellar granule cells. Using the patch-clamp technique in the whole-cell configuration, we recorded the spontaneous excitatory postsynaptic currents (sEPSCs) from rat cerebellar granule cells in culture and in slices at physiological concentration of Mg2+ (1 mM). A holding potential of +60 mV removes Mg2+ block of NMDA channels, allowing us to record NMDA-sEPSCs. We thus compared the frequency of AMPA-sEPSCs, recorded at −60 mV, with that of NMDA-sEPSCs, recorded at +60 mV. NMDA-sEPSCs occurred at higher frequency than the AMPA-sEPSCs in most cells recorded in slices from rats at postnatal day (P) <13 and in culture at 6–8 days after plating (DIV6–8). In a few cells from young rats (P6–9) and in most neurons in culture at DIV6 we recorded exclusively NMDA-sEPSCs, supporting the hypothesis of existence of functional synapses with NMDA and without AMPA receptors. Increasing glutamate release in the slice with cyclothiazide and temperature increased AMPA and NMDA-sEPSCs frequencies but failed to alter the relative ratio of frequency of occurrence. Frequency ratio of NMDA versus AMPA-sEPSCs in slices was correlated with the weighted time constant of decay (τ w ) of NMDA-sEPSCs and decreased with development along the reported decrease of τ w . We suggest that the prevalence of synaptic NR2A subunits that confer faster kinetics is paralleled by the disappearance of silent synapses early in cerebellar development.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3