Intentional signal in prefrontal cortex generalizes across different sensory modalities

Author:

Choi Kyuwan12,Torres Elizabeth B.123

Affiliation:

1. Psychology Department, Rutgers University, Piscataway, New Jersey;

2. Center for Computational Biomedicine Imaging and Modeling, Computer Science Department, Rutgers University, Piscataway, New Jersey; and

3. Rutgers Center for Cognitive Science, Rutgers University, Piscataway, New Jersey

Abstract

Biofeedback-EEG training to learn the mental control of an external device (e.g., a cursor on the screen) has been an important paradigm to attempt to understand the involvements of various areas of the brain in the volitional control and the modulation of intentional thought processes. Often the areas to adapt and to monitor progress are selected a priori. Less explored, however, has been the notion of automatically emerging activation in a particular area or subregions within that area recruited above and beyond the rest of the brain. Likewise, the notion of evoking such a signal as an amodal, abstract one remaining robust across different sensory modalities could afford some exploration. Here we develop a simple binary control task in the context of brain-computer interface (BCI) and use a Bayesian sparse probit classification algorithm to automatically uncover brain regional activity that maximizes task performance. We trained and tested 19 participants using the visual modality for instructions and feedback. Across training blocks we quantified coupling of the frontoparietal nodes and selective involvement of visual and auditory regions as a function of the real-time sensory feedback. The testing phase under both forms of sensory feedback revealed automatic recruitment of the prefrontal cortex with a parcellation of higher strength levels in Brodmann's areas 9, 10, and 11 significantly above those in other brain areas. We propose that the prefrontal signal may be a neural correlate of externally driven intended direction and discuss our results in the context of various aspects involved in the cognitive control of our thoughts.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3