Loss of the Fragile X Mental Retardation Protein Decouples Metabotropic Glutamate Receptor Dependent Priming of Long-Term Potentiation From Protein Synthesis

Author:

Auerbach Benjamin D.1,Bear Mark F.1

Affiliation:

1. Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Fragile X Syndrome (FXS), the most common inherited form of intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). FMRP is a negative regulator of local mRNA translation downstream of group 1 metabotropic glutamate receptor (Gp1 mGluR) activation. In the absence of FMRP there is excessive mGluR-dependent protein synthesis, resulting in exaggerated mGluR-dependent long-term synaptic depression (LTD) in area CA1 of the hippocampus. Understanding disease pathophysiology is critical for development of therapies for FXS and the question arises of whether it is more appropriate to target excessive LTD or excessive mGluR-dependent protein synthesis. Priming of long-term potentiation (LTP) is a qualitatively different functional consequence of Gp1 mGluR-stimulated protein synthesis at the same population of CA1 synapses where LTD can be induced. Therefore we determined if LTP priming, like LTD, is also disrupted in the Fmr1 knockout (KO) mouse. We found that mGluR-dependent priming of LTP is of comparable magnitude in wild-type (WT) and Fmr1 KO mice. However, whereas LTP priming requires acute stimulation of protein synthesis in WT mice, it is no longer protein synthesis dependent in the Fmr1 KO. These experiments show that the dysregulation of mGluR-mediated protein synthesis seen in Fmr1 KO mice has multiple consequences on synaptic plasticity, even within the same population of synapses. Furthermore, it suggests that there is a bifurcation in the Gp1 mGluR signaling pathway, with one arm triggering synaptic modifications such as LTP priming and LTD and the other stimulating protein synthesis that is permissive for these modifications.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3