Arginine vasopressin stimulation of cerebral microvascular endothelial cell Na-K-Cl cotransporter activity is V1receptor and [Ca] dependent

Author:

O’Donnell Martha E.,Duong Vicki,Suvatne Jimmy,Foroutan Shahin,Johnson Denise M.

Abstract

Ischemia-induced brain edema formation is mediated by increased transport of Na and Cl across an intact blood-brain barrier (BBB). Our previous studies have provided evidence that a luminally located BBB Na-K-Cl cotransporter is stimulated during cerebral ischemia to increase transport of Na and Cl into the brain. The main focus of the present study was to evaluate the effects of arginine vasopressin (AVP), previously shown to be increased in the brain during ischemia and to promote edema formation, on activity of the BBB cotransporter. Cerebral microvascular endothelial cell (CMEC) monolayers were cultured in astroglial cell conditioned medium, and Na-K-Cl cotransporter activity was assessed as bumetanide-sensitive86Rb influx. In both human and bovine CMECs, as well as in freshly isolated microvessels, AVP stimulated cotransport activity. This stimulatory effect was mimicked by V1but not V2vasopressin agonists and was blocked by V1but not V2vasopressin antagonists. Consistent with a V1vasopressin receptor mechanism of action, AVP caused an increase in CMEC intracellular [Ca] that was blocked by a V1antagonist. Exposing the cells to [Ca]-free media and/or reducing intracellular [Ca] by BAPTA also blocked AVP stimulation of CMEC cotransporter activity, as did the phospholipase C inhibitor U-73122. Finally, we found that while stimulation of CMEC cotransporter activity by AVP occurred within minutes, it was also sustained for hours in the continued presence of AVP. These findings support the hypothesis that AVP, through a V1receptor- and [Ca]-dependent mechanism, stimulates the BBB Na-K-Cl cotransporter to participate in ischemia-induced edema formation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3