Author:
Lai Xiao-Gang,Yang Jun,Zhou Shi-Sheng,Zhu Jun,Li Gui-Rong,Wong Tak-Ming
Abstract
The cardiac Ca2+-independent transient outward K+ current ( Ito), a major repolarizing ionic current, is markedly affected by Cl− substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl− with less permeant anions, aspartate (Asp−) and glutamate (Glu−), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl− substitute Br− did not markedly affect the current, whereas F− substitution for Cl− induced a slight inhibition. The Ito elicited during Br− substitution for Cl− was also sensitive to blockade by 4-AP. The ability of Cl− substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3− > Cl− ≈ Br− > gluconate− > Glu− > Asp−. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp− substitution for Cl− was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated.
Publisher
American Physiological Society
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献