Protein tyrosine phosphatase PTPεM negatively regulates PDGF β-receptor signaling induced by high glucose and PDGF in vascular smooth muscle cells

Author:

Shimizu Hidehisa1,Nakagawa Yoshimi1,Murakami Chie1,Aoki Naohito2,Kim-Mitsuyama Shokei3,Miyazaki Hitoshi1

Affiliation:

1. Graduate School of Life and Environmental Sciences, Alliance for Research on North Africa, University of Tsukuba, Ibaraki, and

2. Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan; and

3. Department of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan

Abstract

Vascular smooth muscle cell (VSMC) proliferation and migration and vascular endothelial cell (VEC) dysfunction are closely associated with the development of atherosclerosis. We previously demonstrated that protein tyrosine phosphatase ε M (PTPεM) promotes VEC survival and migration. The present study investigates the biological functions of PTPεM in VSMCs and determines whether PTPεM is implicated in diabetes-accelerated atherosclerosis. We overexpressed wild-type and inactive PTPεM and an small interfering RNA (siRNA) of PTPεM by using an adenovirus vector to investigate the effects of PTPεM upon platelet-derived growth factor (PDGF)- and high glucose (HG)-induced responses of rat VSMCs in vitro. We found that PTPεM decreased PDGF-induced DNA synthesis and migration by reducing the phosphorylation level of the PDGF β-receptor (PDGFRβ) with subsequently suppressed H2O2 generation. The HG content in the medium generated H2O2, upregulated PDGFRβ expression and its tyrosine-phosphorylation, and elevated NADPH oxidase 1 (Nox1) expression even without exogenous PDGF, all of which were downregulated by PTPεM. The PDGFR inhibitor AG1296 also blocked HG-induced Nox1 expression and H2O2 production. Moreover, HG suppressed PTPεM expression itself, which was blocked by the antioxidant N-acetyl-l-cysteine. The effects of PTPεM siRNA were the opposite of those of wild-type PTPεM. Therefore, PTPεM negatively regulates PDGFRβ-mediated signaling pathways that are crucial for the pathogenesis of atherosclerosis, and PTPεM may be involved in diabetes-accelerated atherosclerosis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3