Negative regulation of cellular Ca2+ mobilization by ryanodine receptor type 3 in mouse mesenteric artery smooth muscle

Author:

Matsuki Katsuhito1,Kato Daiki1,Takemoto Masashi1,Suzuki Yoshiaki1ORCID,Yamamura Hisao1ORCID,Ohya Susumu12,Takeshima Hiroshi3,Imaizumi Yuji1

Affiliation:

1. Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan

2. Department of Pharmacology, Graduate School of Medicine, Nagoya City University, Nagoya, Japan

3. Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan

Abstract

Physiological functions of type 3 ryanodine receptors (RyR3) in smooth muscle (SM) tissues are not well understood, in spite of their wide expression. However, the short isoform of RyR3 is known to be a dominant-negative variant (DN-RyR3), which may negatively regulate functions of both RyR2 and full-length (FL) RyR3 by forming hetero-tetramers. Here, functional roles of RyR3 in the regulation of Ca2+ signaling in mesenteric artery SM cells (MASMCs) were examined using RyR3 homozygous knockout mice (RyR3−/−). Quantitative PCR analyses suggested that the predominant RyR3 subtype in MASMs from wild-type mice (RyR3+/+) was DN-RyR3. In single MASMCs freshly isolated from RyR3−/−, the EC50 of caffeine to induce Ca2+ release was lower than that in RyR3+/+ myocytes. The amplitude and frequency of Ca2+ sparks and spontaneous transient outward currents in MASMCs from RyR3−/− were all larger than those from RyR3+/+. Importantly, mRNA and functional expressions of voltage-dependent Ca2+ channel and large-conductance Ca2+-activated K+ (BK) channel in MASMCs from RyR3−/− were identical to those from RyR3+/+. However, in the presence of BK channel inhibitor, paxilline, the pressure rises induced by BayK8644 in MA vascular beds of RyR3−/− were significantly larger than in those of RyR3+/+. This indicates that the negative feedback effects of BK channel activity on intracellular Ca2+ signaling was enhanced in RyR3−/−. Thus, RyR3, and, in fact, mainly DN-RyR3, via a complex with RyR2 suppresses Ca2+ release and indirectly regulated membrane potential by reducing BK channel activity in MASMCs and presumably can affect the regulation of intrinsic vascular tone.

Funder

Japan Society for the Promotion of Science (JSPS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3