Gestational change in Na+ and Ca2+ channel current densities in rat myometrial smooth muscle cells

Author:

Inoue Y.1,Sperelakis N.1

Affiliation:

1. Department of Physiology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267-0576.

Abstract

The change of Na+ and Ca2+ channel currents during gestation was investigated using the whole cell voltage-clamp method on single smooth muscle cells freshly isolated from the longitudinal layer of pregnant rat uterus. The current-voltage relationships for both the Na+ and Ca2+ currents did not change during gestation. The threshold voltage, the voltage at the peak inward current, and the reversal potential (extrapolated) were virtually identical. The averaged current densities of Ca2+ channel were almost unchanged between days 9 and 21; this value at day 5 was somewhat lower. In contrast, the averaged current density of fast Na+ channels increased markedly in the myometrium during gestation: from 0 at day 5 to 0.19 +/- 0.16 at day 9, to 0.56 +/- 0.13 at day 14, to 0.90 +/- 0.13 at day 18, and to 0.86 +/- 0.14 pA/pF at day 21. This almost linear increase in the averaged density of fast Na+ channels during gestation occurs because of an increase in the fraction of cells which possessed fast Na+ channels. These results suggest that the role of fast Na+ channels in myometrial activity becomes more and more important as term approaches. We suggest that the fast Na+ current may be involved in spread of excitation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TRPM4 contribution in mouse uterine contractions;Reproduction;2023-05-19

2. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment;Annual Review of Physiology;2021-02-10

3. Sodium channels and transporters in the myometrium;Current Opinion in Physiology;2020-02

4. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective;Cardiovascular & Hematological Disorders-Drug Targets;2019-07-05

5. The Myometrium: From Excitation to Contractions and Labour;Advances in Experimental Medicine and Biology;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3