Sepsis does not impair tricarboxylic acid cycle in the heart

Author:

Hotchkiss R. S.1,Song S. K.1,Neil J. J.1,Chen R. D.1,Manchester J. K.1,Karl I. E.1,Lowry O. H.1,Ackerman J. J.1

Affiliation:

1. Department of Anesthesiology, Washington University School ofMedicine, St. Louis 63110.

Abstract

Sepsis has been reported to cause mitochondrial dysfunction and inhibition of key enzymes that regulate the tricarboxylic acid (TCA) cycle. We investigated the effect of sepsis on high-energy phosphates, glycolytic and TCA cycle intermediates, and specific amino acids that are involved in regulating the size of the TCA cycle pool during changes in metabolic state of the heart. Sepsis was induced in 12 female rats by the cecal ligation and perforation technique under halothane anesthesia; seven control rats underwent cecal manipulation without ligation. At 36-42 h postsurgery, the rats were reanesthetized, the chest was opened, and the hearts were freeze-clamped. Perchloric acid extracts of the hearts were analyzed with fluorometric enzymatic methods and 31P nuclear magnetic resonance spectroscopy. There were no significant differences in the levels of the TCA cycle intermediates or high-energy phosphates between the septic and control rats. The major metabolic changes were the 28% decrease in alanine and the 31% decrease in glutamate in the septic hearts compared with control (P less than 0.05 and P less than 0.005, respectively). Phosphocholine, a component of membrane phospholipids, was increased by 91% in the septic hearts (P less than 0.01). We conclude that sepsis does not impair the TCA cycle or induce significant cellular ischemia in the heart. The increase in phosphocholine may represent significant cellular membrane disruption during sepsis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3