Calcium oscillations and morphological transformations in single cultured gastric parietal cells

Author:

Ljungstrom M.1,Chew C. S.1

Affiliation:

1. Department of Physiology, Morehouse School of Medicine, Atlanta,Georgia 30310-1495.

Abstract

Calcium is an important regulator of cellular activities including HCl secretion by parietal cells. With cholinergic agonists, a role for calcium is established; however, with histamine, at least two signaling pathways may be involved including calcium and adenosine 3',5'-cyclic monophosphate (cAMP). Because chelation of medium and/or cellular calcium has pronounced inhibitory effects on cholinergic but lesser effects on histamine-stimulated acid secretory responses in cell populations, the calcium pathway may not be of central importance for HCl secretion regulated by histamine. We have used digitized video imaging of fura-2 fluorescence ratios and cellular morphology to determine more precisely the relationship between cellular calcium signaling mechanisms and acid secretion in single cultured rabbit parietal cells. Calcium signaling patterns were found to exhibit striking differences with histamine as compared with the cholinergic agonist carbachol. Maximal doses of histamine initiated repetitive oscillations in intracellular calcium ([Ca2+]i) in approximately 50% of cells, whereas the maximal carbachol response was characterized by a typical initial spike followed by a sustained elevation in [Ca2+]i. Oscillations in response to carbachol were detected only at doses below the half-maximal concentration for initiation of acid secretion. Correlation of gradual expansion of acidic vacuoles with increases in [Ca2+]i in the same cells indicated that approximately 20% of cells increased acid secretory-related activities in response to histamine with no detectable rise in [Ca2+]i. These data suggest two possibilities: 1) a rise in [Ca2+]i is not necessary for histamine-stimulated HCl secretion, or 2) heterogeneous receptor-coupling mechanisms exist in parietal cell populations with either calcium or cAMP mechanisms predominating in different subpopulations. The ability to assess simultaneously acid secretory-related responses and calcium signaling patterns allows, for the first time, correlation of "physiological" and biochemical responses in single parietal cells. This methodology is expected to provide new insight into second messenger control mechanisms that are not possible either in cell populations or acutely isolated parietal cells that do not exhibit morphological transformations detectable at the light microscope level.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3