Mitochondrial creatine sensitivity is lost in the D2.mdx model of Duchenne muscular dystrophy and rescued by the mitochondrial-enhancing compound Olesoxime

Author:

Bellissimo Catherine A.1ORCID,Delfinis Luca J.1,Hughes Meghan C.1,Turnbull Patrick C.1,Gandhi Shivam1,DiBenedetto Sara N.1,Rahman Fasih A.2,Tadi Peyman1,Amaral Christina A.1,Dehghani Ali1,Cobley James N.3,Quadrilatero Joe2ORCID,Schlattner Uwe4ORCID,Perry Christopher G.R.1ORCID

Affiliation:

1. School of Kinesiology & Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada

2. Faculty of Health, Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada

3. Redox Biology Group, Centre for Health Sciences, University of the Highlands and Islands, Inverness, United Kingdom

4. Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, Inserm U1055, Grenoble, France and Institut Universiatire de France Paris, France

Abstract

Duchenne muscular dystrophy (DMD) is associated with distinct mitochondrial stress responses. Here, we aimed to determine whether the prospective mitochondrial-enhancing compound Olesoxime, prevents early-stage mitochondrial stress in limb and respiratory muscle from D2. mdx mice using a proof-of-concept short-term regimen spanning 10–28 days of age. As mitochondrial-cytoplasmic energy transfer occurs via ATP- or phosphocreatine-dependent phosphate shuttling, we assessed bioenergetics with or without creatine in vitro. We observed that disruptions in Complex I-supported respiration and mH2O2 emission in D2. mdx quadriceps and diaphragm were amplified by creatine demonstrating mitochondrial creatine insensitivity manifests ubiquitously and early in this model. Olesoxime selectively rescued or maintained creatine sensitivity in both muscles, independent of the abundance of respiration-related mitochondrial proteins or mitochondrial creatine kinase cysteine oxidation in quadriceps. Mitochondrial calcium retention capacity and glutathione were altered in a muscle-specific manner in D2. mdx but were generally unchanged by Olesoxime. Treatment reduced serum creatine kinase (muscle damage) and preserved cage hang-time, microCT-based volumes of lean compartments including whole body, hindlimb and bone, recovery of diaphragm force after fatigue, and cross-sectional area of diaphragm type IIX fiber, but reduced type I fibers in quadriceps. Grip strength, voluntary wheel-running and fibrosis were unaltered by Olesoxime. In summary, locomotor and respiratory muscle mitochondrial creatine sensitivities are lost during early stages in D2. mdx mice but are preserved by short-term treatment with Olesoxime in association with specific indices of muscle quality suggesting early myopathy in this model is at least partially attributed to mitochondrial stress.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3