Exploring mechanistic links between extracellular branched-chain amino acids and muscle insulin resistance: an in vitro approach

Author:

Crossland Hannah1ORCID,Smith Kenneth1,Idris Iskandar1,Phillips Bethan E.1,Atherton Philip J.1,Wilkinson Daniel J.1

Affiliation:

1. Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, Clinical, Metabolic and Molecular Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom

Abstract

Branched-chain amino acids (BCAAs) are essential for critical metabolic processes; however, recent studies have associated elevated plasma BCAA levels with increased risk of insulin resistance. Using skeletal muscle cells, we aimed to determine whether continued exposure of high extracellular BCAA would result in impaired insulin signaling and whether the compound sodium phenylbutyrate (PB), which induces BCAA metabolism, would lower extracellular BCAA, thereby alleviating their potentially inhibitory effects on insulin-mediated signaling. Prolonged exposure of elevated BCAA to cells resulted in impaired insulin receptor substrate 1/AKT signaling and insulin-stimulated glycogen synthesis. PB significantly reduced media BCAA and branched-chain keto acid concentrations and increased phosphorylation of AKT [+2.0 ± 0.1-fold; P < 0.001 versus without (−)PB] and AS160 (+3.2 ± 0.2-fold; P < 0.001 versus −PB); however, insulin-stimulated glycogen synthesis was further reduced upon PB treatment. Continued exposure of high BCAA resulted in impaired intracellular insulin signaling and glycogen synthesis, and while forcing BCAA catabolism using PB resulted in increases in proteins important for regulating glucose uptake, PB did not prevent the impairments in glycogen synthesis with BCAA exposure.

Funder

Medical Research Council

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3