Affiliation:
1. Cardiometabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
Abstract
The mechanisms mediating hyperglycemia-mediated myocardial cell death are poorly defined. Since elevated flux through the hexosamine biosynthetic pathway (HBP) is closely linked with the diabetic phenotype, we hypothesized that hyperglycemia-mediated oxidative stress results in greater O-GlcNAcylation (HBP end product) of the proapoptotic peptide BAD, thereby increasing myocardial apoptosis. H9c2 cardiomyoblasts were exposed to high glucose (33 mM) ± HBP modulators ± antioxidant treatment for 5 days vs. matched controls (5.5 mM), and we subsequently evaluated apoptosis by immunoblotting, immunofluorescence staining, and caspase activity measurements. In vitro reactive oxygen species (ROS) levels were quantified by 2′,7′-dichlorodihydrofluorescein diacetate staining (fluorescence microscopy and flow cytometry). We determined total and BAD O-GlcNAcylation, respectively, by immunoblotting and immunofluorescence microscopy. The current study shows that high glucose treatment of cells significantly increased the degree of apoptosis. In parallel, overall O-GlcNAcylation, BAD O-GlcNAcylation, and ROS levels were increased. HBP inhibition and antioxidant treatment attenuated these effects, while increased end product levels exacerbated it. As BAD-Bcl-2 dimer formation enhances apoptosis, we performed immunoprecipitation analysis and colocalization and found increased dimerization in cells exposed to hyperglycemia. Our study identified a novel pathway whereby hyperglycemia results in greater oxidative stress and increased HBP activation and BAD O-GlcNAcylation in H9c2 cardiomyoblasts. Since greater BAD-Bcl-2 dimerization increases myocardial apoptosis, this pathway may play a crucial role in diabetes-related onset of heart diseases.
Publisher
American Physiological Society
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献