Improved in vitro rheological system for studying the effect of fluid shear stress on cultured cells

Author:

Schnittler H. J.1,Franke R. P.1,Akbay U.1,Mrowietz C.1,Drenckhahn D.1

Affiliation:

1. Institute of Anatomy, University of Wurzburg, Germany.

Abstract

A rheological in vitro system has been developed to study and quantify cellular adhesion under precisely defined external shear forces. The system is similar to a cone-and-plate viscosimeter. A rotating transparent cone produces both steady and pulsatile flow profiles on cultured cells. Direct visualization of cells by phase-contrast or fluorescence optics and connection of the optical system to a computer-controlled x/y-linear stage allows automatic recording of any point of the cell cultures. With the use of up to 12 individual rheological units, this setup allows the quantitative analysis of cell substrate adhesion by determination of cell detachment kinetics. Two examples of application of this rheological system have been studied. First, we show that the extracellular matrix protein laminin strongly increases endothelial cell adhesion under fluid shear stress. In a second approach, we obtained further support for the concept that shear stress-induced formation of actin filament stress fibers is important for endothelial cells to resist the fluid shear stress; inhibition of stress fiber formation by doxorubicin resulted in significant detachment of endothelial cells exposed to medium levels of fluid shear stress (5 dyn/cm2). No detachment was seen under resting conditions.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3