Membrane potential oscillation from a novel combination of ion channels

Author:

Stelling J. W.1,Jacob T. J.1

Affiliation:

1. Department of Physiology, University of Wales, Cardiff, UnitedKingdom.

Abstract

Single pigmented epithelial cells from the ciliary body of the eye were studied using the whole cell voltage and current clamp, permeabilized patch recording, and patch-clamp recording. These cells can produce two types of oscillation. Both are slow, with a period in the range of 1-2 min; one has a low amplitude and oscillates between -60 and -80 mV, and the second is larger, with biphasic hyperpolarizing and depolarizing phases. The latter was seen when the membrane potential was driven negative by a constant current and results from the interplay between the inward rectifier K+ channel and a hyperpolarizing-activated cation channel. The hyperpolarization is caused by the constant current acting on a decreasing conductance as the inward rectifier inactivates, and the depolarization drive results from the activation of cation channels. It is suggested that the constant current would be provided by the Na+ pump in vivo, and such an interplay of channels and pumps could drive the uptake of cations in absorbing epithelia or provide an increased driving force for chloride exit in secretory epithelia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3