Mitochondrial KATP channel openers activate the ERK kinase by an oxidant-dependent mechanism

Author:

Samavati Lobelia1,Monick Martha M.1,Sanlioglu Salih1,Buettner Garry R.2,Oberley Larry W.2,Hunninghake Gary W.1

Affiliation:

1. Department of Medicine and

2. Free Radical and Radiation Biology Program, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242

Abstract

Extracellular signal-regulated kinases (ERKs) are key regulatory proteins that mediate cell survival, proliferation, and differentiation. Reactive oxygen species (ROS) may play a role in activation of the ERK pathway. Because mitochondria are a major source of ROS, we investigated whether mitochondria-derived ROS play a role in ERK activation. Diazoxide, a potent mitochondrial ATP-sensitive K+ (KATP) channel opener, is known to depolarize the mitochondrial membrane potential and cause a reversible oxidation of respiratory chain flavoproteins, thus increasing mitochondrial ROS production. Using THP-1 cells as a model, we postulated that opening mitochondrial KATP channels would increase production of ROS and, thereby, regulate the activity of the ERK kinase. We found that opening mitochondrial KATP channels by diazoxide induced production of ROS as determined by an increased rate of dihydroethidium and dichlorofluorescein fluorescence. This increased production of ROS was associated with increased phosphorylation of ERK kinase in a time-dependent fashion. The MEK inhibitors PD-98059 and U-0126 blocked ERK activation mediated by diazoxide. N-acetylcysteine, but not diphenyleneiodonium, attenuated ERK activation mediated by diazoxide. Adenovirus-mediated overexpression of manganese superoxide dismutase, which is expressed in mitochondria, decreased the rate of dihydroethidium oxidation as well as ERK activation. We conclude that mitochondrial KATP channel openers trigger ERK activation via mitochondria-derived ROS.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3