ATP depletion and loss of cell integrity in anoxic hepatocytes and silica-treated P388D1 macrophages

Author:

Kane A. B.,Petrovich D. R.,Stern R. O.,Farber J. L.

Abstract

The relationship between ATP depletion and the loss of cell integrity was examined in the killing of hepatocytes by anoxia and P388D1 macrophages by silica. ATP depletion is a feature of the reaction to either hazard. Treatment of hepatocytes, however, with antimycin, oligomycin, sodium azide, or N,N'-dicyclohexylcarbodiimide produced a rate and extent of ATP depletion comparable with anoxia without significant loss of viability. Treatment of P388D1 cells with 2-deoxyglucose plus antimycin, oligomycin, or sodium azide reproduced the loss of ATP accompanying silica particle intoxication. Again, there was no loss of viability. These data dissociate the loss of cellular ATP from the genesis of lethal injury in both cell types. ATP depletion was, however, associated with a loss of lysosomal integrity. With the metabolic inhibitors, loss of lysosomal integrity occurred in the absence of irreversible cell injury over the time course that anoxia and silica intoxication significantly damaged the cells. This implies that neither hazard produces lethal damage through mechanisms dependent on intracellular lysosomal enzyme release. While ATP depletion can cause lysosomal rupture in P388D1 macrophages, phagocytosis of silica particles in the absence of extracellular Ca2+ ions is associated with release of lysosomal contents without depletion of ATP or loss of cell integrity. Silica particles are concluded to interact directly with both the plasma and lysosomal membranes. The former leads to Ca2+ influx with resultant cell death and ATP depletion. The latter leads to release of lysosomal contents that is not followed by irreversible cell injury.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3