Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin

Author:

Takano Katsura,Tabata Yoshiyuki,Kitao Yasuko,Murakami Rika,Suzuki Hiroto,Yamada Masashi,Iinuma Munekazu,Yoneda Yukio,Ogawa Satoshi,Hori Osamu

Abstract

Enhanced endoplasmic reticulum (ER) stress leads to cell death in various pathophysiological situations. During a search for compounds that regulate ER stress, we identified methoxyflavones, a group of flavonoids, as strong protective agents against ER stress. Analysis in mouse insulinoma MIN6 cells revealed that methoxyflavones mildly activated the eukaryotic initiation factor 2α and nuclear factor erythroid 2-related factor pathways, but not the XBP1 pathway, and induced downstream genes, including glucose-regulated protein (GRP) 78, a molecular chaperone in the ER. The protective effect of methoxyflavones was enhanced by agents that increase intracellular cAMP levels such as forskolin, dibutyryl-cAMP and IBMX, but suppressed by the protein kinase A (PKA) inhibitor H-89, suggesting involvement of the PKA pathway in the regulation of ER stress by methoxyflavones. Consistent with the results in cultured cells, pretreatment of mice with tangeretin, a methoxyflavone, enhanced expression of GRP78 and HO-1 without causing ER stress in renal tubular epithelium and prevented tunicamycin-induced cell death. Furthermore, preadministration of tangeretin in mice enhanced expression of GRP78 in the substantia nigra pars compacta and protected dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin that induces both oxidative and ER stress. These results suggest that methoxyflavones play an important role in the regulation of ER stress and could be a therapeutic target for the ER stress-related diseases.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3