Nitric oxide regulation of mitochondrial oxygen consumption I: cellular physiology

Author:

Giulivi Cecilia,Kato Kazunobu,Cooper Christopher Eric

Abstract

Mitochondrial biochemistry is complex, expanding from oxygen consumption, oxidative phosphorylation, lipid catabolism, heme biosynthesis, to apoptosis, calcium homeostasis, and production of reactive oxygen species, including nitric oxide (NO). The latter molecule is produced by a mitochondrial NO synthase (mtNOS). The rates of consumption and production determine the steady-state concentration of NO at subcellular levels, leading to regulation of mitochondrial events. Temporospatial processes tightly regulate production of NO in mitochondria to maximize target effects and minimize deleterious reactions. Temporal regulatory mechanisms of mtNOS include activation by calcium signaling and transcriptional/translational regulations. Calcium-activated mtNOS inhibits mitochondrial respiration, resulting in a decrease of the oxygen consumption. This negative regulation antagonizes the effects of calcium on calcium-dependent dehydrogenases in the citric acid cycle, preventing the formation of anoxic foci. Temporal regulation of NO production by intracellular calcium signaling is a complex process, considering the heterogeneous intracellular calcium response and distribution. NO production in mitochondria is spatially regulated by mechanisms that determine subcellular localization of mtNOS, likely acylation and protein-protein interactions, in addition to transcriptional regulation as neuronal NOS. Because NO rapidly decays in mitochondria, subcellular localization of mtNOS is crucial for NO to function as a signal molecule. These temporospatial processes are biologically important to allow NO to act as an effective signal molecule to regulate mitochondrial events such as oxygen consumption and reactive oxygen species production.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3