Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential

Author:

Heinen André,Camara Amadou K. S.,Aldakkak Mohammed,Rhodes Samhita S.,Riess Matthias L.,Stowe David F.

Abstract

We recently demonstrated a role for altered mitochondrial bioenergetics and reactive oxygen species (ROS) production in mitochondrial Ca2+-sensitive K+ (mtKCa) channel opening-induced preconditioning in isolated hearts. However, the underlying mitochondrial mechanism by which mtKCa channel opening causes ROS production to trigger preconditioning is unknown. We hypothesized that submaximal mitochondrial K+ influx causes ROS production as a result of enhanced electron flow at a fully charged membrane potential (ΔΨm). To test this hypothesis, we measured effects of NS-1619, a putative mtKCa channel opener, and valinomycin, a K+ ionophore, on mitochondrial respiration, ΔΨm, and ROS generation in guinea pig heart mitochondria. NS-1619 (30 μM) increased state 2 and 4 respiration by 5.2 ± 0.9 and 7.3 ± 0.9 nmol O2·min−1·mg protein−1, respectively, with the NADH-linked substrate pyruvate and by 7.5 ± 1.4 and 11.6 ± 2.9 nmol O2·min−1·mg protein−1, respectively, with the FADH2-linked substrate succinate (+ rotenone); these effects were abolished by the mtKCa channel blocker paxilline. ΔΨm was not decreased by 10–30 μM NS-1619 with either substrate, but H2O2 release was increased by 44.8% (65.9 ± 2.7% by 30 μM NS-1619 vs. 21.1 ± 3.8% for time controls) with succinate + rotenone. In contrast, NS-1619 did not increase H2O2 release with pyruvate. Similar results were found for lower concentrations of valinomycin. The increase in ROS production in succinate + rotenone-supported mitochondria resulted from a fully maintained ΔΨm, despite increased respiration, a condition that is capable of allowing increased electron leak. We propose that mild matrix K+ influx during states 2 and 4 increases mitochondrial respiration while maintaining ΔΨm; this allows singlet electron uptake by O2 and ROS generation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alternative oxidase 2 influences Arabidopsis seed germination under salt stress by modulating ABA signalling and ROS homeostasis;Environmental and Experimental Botany;2024-01

2. Benzimidazole Derivative NS1619 Inhibits Functioning of Mitochondria Isolated from Mouse Skeletal Muscle;Биологические мембраны Журнал мембранной и клеточной биологии;2023-07-01

3. Extracellular flux analysis in intact cardiac tissue slices—A novel tool to investigate cardiac substrate metabolism in mouse myocardium;Acta Physiologica;2023-06-08

4. Benzimidazole Derivative NS1619 Inhibits Functioning of Mitochondria Isolated from Mouse Skeletal Muscle;Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology;2023-06

5. Mitochondrial Ion Channels;Annual Review of Biophysics;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3