Statin administration activates system xC− in skeletal muscle: a potential mechanism explaining statin-induced muscle pain

Author:

Rebalka Irena A.1,Cao Andrew W.1,May Linda L.2,Tarnopolsky Mark A.2,Hawke Thomas J.1ORCID

Affiliation:

1. Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada

2. Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada

Abstract

Statins are a cholesterol-lowering drug class that significantly reduce cardiovascular disease risk. Despite their safety and effectiveness, musculoskeletal side-effects, particularly myalgia, are prominent and the most common reason for discontinuance. The cause of statin-induced myalgia is unknown, so defining the underlying mechanism(s) and potential therapeutic strategies is of clinical importance. Here we tested the hypothesis that statin administration activates skeletal muscle system xC, a cystine/glutamate antiporter, to increase intracellular cysteine and therefore glutathione synthesis to attenuate statin-induced oxidative stress. Increased system xC activity would increase interstitial glutamate; an amino acid associated with peripheral nociception. Consistent with our hypothesis, atorvastatin treatment significantly increased mitochondrial reactive oxygen species (ROS; 41%) and glutamate efflux (up to 122%) in C2C12 mouse skeletal muscle myotubes. Statin-induced glutamate efflux was confirmed to be the result of system xC activation, as cotreatment with sulfasalazine (system xC inhibitor) negated this rise in extracellular glutamate. These findings were reproduced in primary human myotubes but, consistent with being muscle-specific, were not observed in primary human dermal fibroblasts. To further demonstrate that statin-induced increases in ROS triggered glutamate efflux, C2C12 myotubes were cotreated with atorvastatin and various antioxidants. α-Tocopherol and cysteamine bitartrate reversed the increase in statin-induced glutamate efflux, bringing glutamate levels between 50 and 92% of control-treated levels. N-acetylcysteine (a system xC substrate) increased glutamate efflux above statin treatment alone: up to 732% greater than control treatment. Taken together, we provide a mechanistic foundation for statin-induced myalgia and offer therapeutic insights to alleviate this particular statin-associated side-effect.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3