PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle

Author:

Geng Tuoyu123,Li Ping1,Okutsu Mitsuharu23,Yin Xinhe1,Kwek Jyeyi4,Zhang Mei123,Yan Zhen1423

Affiliation:

1. Department of Medicine, Duke University Medical Center, Durham, North Carolina;

2. Department of Medicine-Cardiovascular Medicine,

3. Center for Skeletal Muscle Research at Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia

4. Cardiovascular and Metabolic Diseases Program, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore; and

Abstract

Endurance exercise stimulates peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression in skeletal muscle, and forced expression of PGC-1α changes muscle metabolism and exercise capacity in mice. However, it is unclear if PGC-1α is indispensible for endurance exercise-induced metabolic and contractile adaptations in skeletal muscle. In this study, we showed that endurance exercise-induced expression of mitochondrial enzymes (cytochrome oxidase IV and cytochrome c) and increases of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31)-positive endothelial cells in skeletal muscle, but not IIb-to-IIa fiber-type transformation, were significantly attenuated in muscle-specific Pgc-1α knockout mice. Interestingly, voluntary running effectively restored the compromised mitochondrial integrity and superoxide dismutase 2 (SOD2) protein expression in skeletal muscle in Pgc-1α knockout mice. Thus, PGC-1α plays a functional role in endurance exercise-induced mitochondrial biogenesis and angiogenesis, but not IIb-to-IIa fiber-type transformation in mouse skeletal muscle, and the improvement of mitochondrial morphology and antioxidant defense in response to endurance exercise may occur independently of PGC-1α function. We conclude that PGC-1α is required for complete skeletal muscle adaptations induced by endurance exercise in mice.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3