Cyclooxygenase-2 is required for activated pancreatic stellate cells to respond to proinflammatory cytokines

Author:

Aoki Hiroyoshi,Ohnishi Hirohide,Hama Kouji,Shinozaki Satoshi,Kita Hiroto,Osawa Hiroyuki,Yamamoto Hironori,Sato Kiichi,Tamada Kiichi,Sugano Kentaro

Abstract

Cyclooxygenase-2 (COX-2) mediates various inflammatory responses and is expressed in pancreatic tissue from patients with chronic pancreatitis. To examine the role of COX-2 in chronic pancreatitis, we investigated its participation in regulating functions of pancreatic stellate cells (PSCs), using isolated rat PSCs. COX-2 was expressed in culture-activated PSCs but not in freshly isolated quiescent PSCs. TGF-β1, IL-1β, and IL-6 enhanced COX-2 expression in activated PSCs, concomitantly increasing the expression of α-smooth muscle actin (α-SMA), a parameter of PSC activation. The COX-2 inhibitor NS-398 blocked culture activation of freshly isolated quiescent PSCs. NS-398 also inhibited the enhancement of α-SMA expression by TGF-β1, IL-1β, and IL-6 in activated PSCs. These data indicate that COX-2 is required for the initiation and promotion of PSC activation. We further investigated the mechanism by which cytokines enhance COX-2 expression in PSCs. Adenovirus-mediated expression of dominant negative Smad2/3 inhibited the increase in expression of COX-2, α-SMA, and collagen-1 mediated by TGF-β1 in activated PSCs. Moreover, dominant negative Smad2/3 expression attenuated the expression of COX-2 and α-SMA enhanced by IL-1β and IL-6. Anti-TGF-β neutralizing antibody also attenuated the increase in COX-2 and α-SMA expression caused by IL-1β and IL-6. IL-6 as well as IL-1β enhanced TGF-β1 secretion from PSCs. These data indicate that Smad2/3-dependent pathway plays a central role in COX-2 induction by TGF-β1, IL-1β, and IL-6. Furthermore, IL-1β and IL-6 promote PSC activation by enhancing COX-2 expression indirectly through Smad2/3-dependent pathway by increasing TGF-β1 secretion from PSCs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3