Uterine artery myosin phosphatase isoform switching and increased sensitivity to SNP in a ratl-NAME model of hypertension of pregnancy

Author:

Lu Yuan,Zhang Haiying,Gokina Natalia,Mandala Maurizio,Sato Osamu,Ikebe Mitsuo,Osol George,Fisher Steven A.

Abstract

Dramatic and vascular bed-specific hemodynamic changes occur in pregnancy and hypertension of pregnancy (HtP). Because myosin phosphatase (MP) is the primary effector of smooth muscle relaxation and a key target of signaling pathways that regulate vascular tone, we hypothesized that MP expression would be altered in these conditions. The abundance of the targeting/regulatory subunit of MP (MYPT1) mRNA and protein was increased 1.7- to 2.0-fold specifically in the uterine arteries (UAs) of late-pregnant rats without isoform switching. In a model of HtP in which nitric oxide (NO) synthesis is blocked by the chronic administration of Nω-nitro-l-arginine methyl ester, MYPT1 was downregulated and switched to the splice variant isoform that codes for the COOH-terminal leucine zipper motif. This was associated with increased sensitivity of the main UA and its subbranches to the vasorelaxant effects of the NO donor drug sodium nitroprusside. This difference was abolished by pretreatment with the phosphatase inhibitor tautomycetin. The sensitivity of relaxation to the NO second messenger cGMP was also increased under calcium-clamp conditions in permeabilized UAs, indicating heightened activation of MP. The changes in MP expression in HtP were largely prevented by treatment with the antihypertensive medicine hydralazine. We propose that MYPT1 isoform switching is an adaptive response to reduce vascular resistance and maintain uterine blood flow in the setting of hypertension-triggered inward remodeling of the UAs in hypertension of pregnancy.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3