Author:
Lu Yuan,Zhang Haiying,Gokina Natalia,Mandala Maurizio,Sato Osamu,Ikebe Mitsuo,Osol George,Fisher Steven A.
Abstract
Dramatic and vascular bed-specific hemodynamic changes occur in pregnancy and hypertension of pregnancy (HtP). Because myosin phosphatase (MP) is the primary effector of smooth muscle relaxation and a key target of signaling pathways that regulate vascular tone, we hypothesized that MP expression would be altered in these conditions. The abundance of the targeting/regulatory subunit of MP (MYPT1) mRNA and protein was increased 1.7- to 2.0-fold specifically in the uterine arteries (UAs) of late-pregnant rats without isoform switching. In a model of HtP in which nitric oxide (NO) synthesis is blocked by the chronic administration of Nω-nitro-l-arginine methyl ester, MYPT1 was downregulated and switched to the splice variant isoform that codes for the COOH-terminal leucine zipper motif. This was associated with increased sensitivity of the main UA and its subbranches to the vasorelaxant effects of the NO donor drug sodium nitroprusside. This difference was abolished by pretreatment with the phosphatase inhibitor tautomycetin. The sensitivity of relaxation to the NO second messenger cGMP was also increased under calcium-clamp conditions in permeabilized UAs, indicating heightened activation of MP. The changes in MP expression in HtP were largely prevented by treatment with the antihypertensive medicine hydralazine. We propose that MYPT1 isoform switching is an adaptive response to reduce vascular resistance and maintain uterine blood flow in the setting of hypertension-triggered inward remodeling of the UAs in hypertension of pregnancy.
Publisher
American Physiological Society
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献