Autocrine production of prostaglandin F2αenhances phenotypic transformation of normal rat kidney fibroblasts

Author:

Harks E. G. A.,Peters P. H. J.,van Dongen J. L. J.,van Zoelen E. J. J.,Theuvenet A. P. R.

Abstract

We have used normal rat kidney (NRK) fibroblasts as an in vitro model system to study cell transformation. These cells obtain a transformed phenotype upon stimulation with growth-modulating factors such as retinoic acid (RA) or transforming growth factor-β (TGF-β). Patch-clamp experiments showed that transformation is paralleled by a profound membrane depolarization from around −70 to −20 mV. This depolarization is caused by a compound in the medium conditioned by transformed NRK cells, which enhances intracellular Ca2+levels and thereby activates Ca2+-dependent Clchannels. This compound was identified as prostaglandin F(PGF) using electrospray ionization mass spectrometry. The active concentration in the medium conditioned by transformed NRK cells as determined using an enzyme immunoassay was 19.7 ± 2.5 nM ( n = 6), compared with 1.5 ± 0.1 nM ( n = 3) conditioned by nontransformed NRK cells. Externally added PGFwas able to trigger NRK cells that had grown to density arrest to restart their proliferation. This proliferation was inhibited when the FP receptor (i.e., natural receptor for PGF) was blocked by AL-8810. RA-induced phenotypic transformation of NRK cells was partially (∼25%) suppressed by AL-8810. Our results demonstrate that PGFacts as an autocrine enhancer and paracrine inducer of cell transformation and suggest that it may play a crucial role in carcinogenesis in general.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3