Acute inhibition of brain-specific Na+/H+ exchanger isoform 5 by protein kinases A and C and cell shrinkage

Author:

Attaphitaya Surat12,Nehrke Keith13,Melvin James E.13

Affiliation:

1. Center for Oral Biology in the Aab Institute of Biomedical Sciences and Departments of

2. Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642

3. Dentistry and

Abstract

Little is known of the functional properties of the mammalian, brain-specific Na+/H+ exchanger isoform 5 (NHE5). Rat NHE5 was stably expressed in NHE-deficient PS120 cells, and its activity was characterized using the fluorescent pH-sensitive dye 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. NHE5 was insensitive to ethylisopropyl amiloride. The transport kinetics displayed a simple Michaelis-Menten relationship for extracellular Na+ (apparent K Na= 27 ± 5 mM) and a Hill coefficient near 3 for the intracellular proton concentration with a half-maximal activity at an intracellular pH of 6.93 ± 0.03. NHE5 activity was inhibited by acute exposure to 8-bromo-cAMP or forskolin (which increases intracellular cAMP by activating adenylate cyclase). The kinase inhibitor H-89 reversed this inhibition, suggesting that regulation by cAMP involves a protein kinase A (PKA)-dependent process. In contrast, 8-bromo-cGMP did not have a significant effect on activity. The protein kinase C (PKC) activator phorbol 12-myristrate 13-acetate inhibited NHE5, and the PKC antagonist chelerythrine chloride blunted this effect. Activity was also inhibited by hyperosmotic-induced cell shrinkage but was unaffected by a hyposmotic challenge. These results demonstrate that rat brain NHE5 is downregulated by activation of PKA and PKC and by cell shrinkage, important regulators of neuronal cell function.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3