Regulatory mechanism of smooth muscle contraction studied with gelsolin-treated strips of taenia caeci in guinea pig

Author:

Liou Ying-Ming,Watanabe Masaru,Yumoto Masatoshi,Ishiwata Shin'ichi

Abstract

The potential roles of the regulatory proteins actin, tropomyosin (Tm), and caldesmon (CaD), i.e., the components of the thin filament, in smooth muscle have been extensively studied in several types of smooth muscles. However, controversy remains on the putative physiological significance of these proteins. In this study, we intended to determine the functional roles of Tm and CaD in the regulation of smooth muscle contraction by using a reconstitution system of the thin filaments. At appropriate conditions, the thin (actin) filaments within skinned smooth muscle strips of taenia caeci in guinea pigs could be selectively removed by an actin-severing protein, gelsolin, without irreversible damage to the contractile apparatus, and then the thin filaments were reconstituted with purified components of thin filaments, i.e., actin, Tm, and CaD. We found that the structural remodeling of actin filaments or thin filaments was functionally linked to the Ca2+-induced force development and reduction in muscle cross-sectional area (CSA). That is, after the reconstitution of the gelsolin-treated skinned smooth muscle strips with pure actin, the Ca2+-dependent force development was partially restored, but the Ca2+-induced reduction in CSA occurred once. In contrast, the reconstitution with actin, followed by Tm and CaD, restored not only the force generation but also both its Ca2+sensitivity and the reversible Ca2+-dependent reduction in CSA. We confirmed that both removal of the thin filaments by gelsolin treatment and reconstitution of the actin (thin) filaments with Tm and CaD caused no significant changes in the level of myosin regulatory light chain phosphorylation. We thus conclude that Tm and CaD are necessary for the full regulation of smooth muscle contraction in addition to the other regulatory systems, including the myosin-linked one.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3