Regulation of water permeability in rabbit conjunctival epithelium by anisotonic conditions

Author:

Candia Oscar A.,Alvarez Lawrence J.,Zamudio Aldo C.

Abstract

Effects of unilateral exposure to anisotonic conditions on diffusional water permeability of the isolated rabbit conjunctiva were determined. A segment of the bulbar-palpebral conjunctiva was mounted between Ussing-type hemichambers under short-circuit conditions. Unidirectional water fluxes ( Jdw) were measured in either direction by adding3H2O to one hemichamber and sampling from the other. Electrical parameters were measured simultaneously. Jdwwere determined under control isosmotic conditions and after introduction of either hyper- or hypotonic solutions against the tear or stromal sides of the preparations. In each of these four separate conditions, the anisotonic medium produced an ∼20–30% reduction in Jdwacross the tissue, with the exception that to obtain such reduction with increased tonicity from the stromal side (medium osmolality increased by adding sucrose), conditions presumptively inhibiting regulatory volume increase mechanisms (e.g., pretreatment with amiloride and bumetanide) were also required. All reductions in Jdwelicited by the various anisotonic conditions were reversible on restoration of control tonicity. In experiments in which preparations were pretreated with the protein cross-linking agent glutaraldehyde, anisotonicity-elicited reductions in Jdwwere not observed. Such reductions were also not observed in the presence of HgCl2, implying the involvement of aquaporins. However, it is possible that the mercurial may be toxic to the epithelium, preventing the tonicity response. Nevertheless, from concomitant changes in transepithelial electrical resistance, as well as [14C]mannitol fluxes, [14C]butanol fluxes, and Arrhenius plots, arguments are presented that the above effects are best explained as a cell-regulated reduction in membrane water permeability that occurs at the level of water-transporting channels. Presumably both apical and basolateral membranes can downregulate their water permeabilities as part of a protective mechanism to help maintain cell volume.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3