Effect of a novel BKCa opener on BKCa currents and contractility of the rabbit corpus cavernosum

Author:

Hannigan K. I.1,Large R. J.1,Bradley E.1,Hollywood M. A.1,Sergeant G. P.1,McHale N. G.1,Thornbury K. D.1

Affiliation:

1. Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland

Abstract

Large-conductance Ca2+-activated K+ (BKCa) channels are thought to play a key role in the regulation of corpus cavernosum smooth muscle (CCSM) excitability. Few BKCa channel openers have been accepted for clinical development. The effect of the novel BKCa channel opener GoSlo-SR5-130 on electrical activity in isolated rabbit CCSM cells and mechanical activity in strips of rabbit CCSM was examined. Single-channel currents were observed in inside-out patches. These channels were sensitive to Ca2+, blocked by penitrem A, and had a conductance of 291 ± 20 pS ( n = 7). In the presence of GoSlo-SR5-130, the number of open BKCa channels increased. Using voltage-ramp protocols, GoSlo-SR5-130 caused currents to activate at more negative potentials in a concentration-dependent manner, shifting the half-maximal activation voltage potential to the left on the voltage axis. Therefore, BKCa channels were open within the physiological range of membrane potentials in the presence of GoSlo-SR5-130. GoSlo-SR5-130 also resulted in an increase in the activity of spontaneous transient outward currents in myocytes isolated from CCSM, and this effect was reversed by iberiotoxin. In current-clamp mode, GoSlo-SR5-130 hyperpolarized the cell membrane. Isometric tension recording of strips of rabbit corpus cavernosum showed that GoSlo-SR5-130 inhibited spontaneous contractions in a concentration-dependent manner. This effect was reversed in the presence of iberiotoxin, suggesting that GoSlo-SR5-130 exerts its effect through BKCa channels. These findings suggest that GoSlo-SR5-130 is an effective tool for the study of BKCa channels and that these channels can modulate CCSM activity and are possible targets for the treatment of erectile dysfunction.

Funder

Enterprise Ireland

DkIT Research Office

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3