Human geneSLC41A1encodes for the Na+/Mg2+exchanger

Author:

Kolisek Martin1,Nestler Axel1,Vormann Jürgen2,Schweigel-Röntgen Monika3

Affiliation:

1. Institute for Veterinary Physiology, Freie Universität Berlin, Berlin;

2. Institute for Prevention and Nutrition, Ismaning;

3. Research Unit Nutritional Physiology “Oskar Kellner,” Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany

Abstract

Magnesium (Mg2+), the second most abundant divalent intracellular cation, is involved in the vast majority of intracellular processes, including the synthesis of nucleic acids, proteins, and energy metabolism. The concentration of intracellular free Mg2+([Mg2+]i) in mammalian cells is therefore tightly regulated to its optimum, mainly by an exchange of intracellular Mg2+for extracellular Na+. Despite the importance of this process for cellular Mg2+homeostasis, the gene(s) encoding for the functional Na+/Mg2+exchanger is (are) still unknown. Here, using the fluorescent probe mag-fura 2 to measure [Mg2+]ichanges, we examine Mg2+extrusion from hSLC41A1-overexpressing human embryonic kidney (HEK)-293 cells. A three- to fourfold elevation of [Mg2+]iwas accompanied by a five- to ninefold increase of Mg2+efflux. The latter was strictly dependent on extracellular Na+and reduced by 91% after complete replacement of Na+with N-methyl-d-glucamine. Imipramine and quinidine, known unspecific Na+/Mg2+exchanger inhibitors, led to a strong 88% to 100% inhibition of hSLC41A1-related Mg2+extrusion. In addition, our data show regulation of the transport activity via phosphorylation by cAMP-dependent protein kinase A. As these are the typical characteristics of a Na+/Mg2+exchanger, we conclude that the human SLC41A1 gene encodes for the Na+/Mg2+exchanger, the predominant Mg2+efflux system. Based on this finding, the analysis of Na+/Mg2+exchanger regulation and its involvement in the pathogenesis of diseases such as Parkinson's disease and hypertension at the molecular level should now be possible.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3