Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria

Author:

Koopman Werner J. H.,Distelmaier Felix,Hink Mark A.,Verkaart Sjoerd,Wijers Mietske,Fransen Jack,Smeitink Jan A. M.,Willems Peter H. G. M.

Abstract

Mitochondria continuously change shape, position, and matrix configuration for optimal metabolite exchange. It is well established that changes in mitochondrial metabolism influence mitochondrial shape and matrix configuration. We demonstrated previously that inhibition of mitochondrial complex I (CI or NADH:ubiquinone oxidoreductase) by rotenone accelerated matrix protein diffusion and decreased the fraction and velocity of moving mitochondria. In the present study, we investigated the relationship between inherited CI deficiency, mitochondrial shape, mobility, and matrix protein diffusion. To this end, we analyzed fibroblasts of two children that represented opposite extremes in a cohort of 16 patients, with respect to their residual CI activity and mitochondrial shape. Fluorescence correlation spectroscopy (FCS) revealed no relationship between residual CI activity, mitochondrial shape, the fraction of moving mitochondria, their velocity, and the rate of matrix-targeted enhanced yellow fluorescent protein (mitoEYFP) diffusion. However, mitochondrial velocity and matrix protein diffusion in moving mitochondria were two to three times higher in patient cells than in control cells. Nocodazole inhibited mitochondrial movement without altering matrix EYFP diffusion, suggesting that both activities are mutually independent. Unexpectedly, electron microscopy analysis revealed no differences in mitochondrial ultrastructure between control and patient cells. It is discussed that the matrix of a moving mitochondrion in the CI-deficient state becomes less dense, allowing faster metabolite diffusion, and that fibroblasts of CI-deficient patients become more glycolytic, allowing a higher mitochondrial velocity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3